ETH zürich

Map Projections, Tiles & Copyright

Ionuț Iosifescu

Goal

 Prepare data as tiled maps (similar to Google Maps) for integration into a Web Map Framework

Learn / review

- ...what a map projection is
- ...the concept of zoom level (vs. map scale)
- ...what map tiles are needed for
- ...what is CartoCSS and TileMill
- ...why should we be aware of copyright

Map Projections

E *H zürich*

- Reference: sphere / ellipsoid
 - Distortions; e.g. WGS84, ETRS89
- Mapping surface: cylinder, cone, plane
 - Distortions
 - Aspect: orientation of the surface to the globe: normal, transverse, oblique
 - Tangent or secant to the sphere / ellipsoid
- Preservation of metric properties:
 - Conformal or orthomorphic: locally no angular distortion (e.g. Transverse Mercator)
 - Equivalent or authalic: locally equal-area properties
 - Partially equidistant
 - Others (compromise or error minimizing)

Projection Plane

ETH CAS RIS

Module From GIS Data to Interactive Web Maps

Plate Carrée

- Equirectangular projection
- North-South distances neither stretched nor compressed

WGS84, EPSG: 4326

- Neither equal area nor conformal
- The standard parallel is the equator
- De facto standard for global raster datasets

EPSG

- The EPSG Geodetic Parameter Dataset is a structured dataset of Coordinate Reference Systems and Coordinate Transformations
- The geographic coverage of the data is worldwide
- Maintained by the Geodesy Subcommittee of the International Association of Oil and Gas Producers (IOGP) Geomatics Committee

http://spatialreference.org/ref/epsg/

The Swiss Projection EPSG: 21781

- oblique conformal cylindrical (Mercator) projection
- reference Bessel ellipsoid 1841

The «Google» Projection EPSG: 3857

- A Spherical "Web" Mercator projection (Pseudo-Mercator)
- Popularized by web services such as Google and OpenStreetMap
- Distorted in the North-South direction
- Not conformal
- Reference WGS84
- R=a (R is the spherical Radius, a is the semi-major axis of the WGS84 ellipsoid)
- US Dept. of Defense: "unacceptable for any official use"

http://www.hydrometronics.com/downloads/Web%20Mercator%20-%20Non-Conformal,%20Non-Mercator%20%28notes%29.pdf

Zoom level

Level of Detail	Map Width and Height (pixels)	Ground Resolution (meters / pixel)	Map Scale (at 96 dpi)
1	512	78,271.5170	1 : 295,829,355.45
2	1,024	39,135.7585	1 : 147,914,677.73
3	2,048	19,567.8792	1 : 73,957,338.86
4	4,096	9,783.9396	1 : 36,978,669.43
5	8,192	4,891.9698	1 : 18,489,334.72
6	16,384	2,445.9849	1 : 9,244,667.36
7	32,768	1,222.9925	1 : 4,622,333.68
8	65,536	611.4962	1 : 2,311,166.84
9	131,072	305.7481	1 : 1,155,583.42
10	262,144	152.8741	1 : 577,791.71
11	524,288	76.4370	1 : 288,895.85
12	1,048,576	38.2185	1 : 144,447.93
13	2,097,152	19.1093	1 : 72,223.96
14	4,194,304	9.5546	1 : 36,111.98
15	8,388,608	4.7773	1 : 18,055.99
16	16,777,216	2.3887	1 : 9,028.00
17	33,554,432	1.1943	1 : 4,514.00
18	67,108,864	0.5972	1 : 2,257.00
19	134,217,728	0.2986	1 : 1,128.50
20	268,435,456	0.1493	1 : 564.25
21	536,870,912	0.0746	1 : 282.12
22	1,073,741,824	0.0373	1 : 141.06
23	2,147,483,648	0.0187	1 : 70.53

ground resolution (meters/pixel) = cos(latitude * pi/180) * earth circumference / map width

map scale = 1 : ground resolution * screen dpi / 0.0254 meters/inch

Based on the documentation provided for Microsoft Bing Maps by J. Schwartz,

https://msdn.microsoft.com/en-us/library/bb259689.aspx

TileMill

CartoCSS

- Like CSS, but for maps
- Style syntax for TileMill
- Convertible to Mapnik XML (default rendering engine for OpenStreetMap)
- 10 fundamental style types named symbolizers:
 - Line (for lines & polygons)
 - Polygon (for polygons)
 - Point (for points)
 - Text (for points, lines, and polygons)
 - Shield (for points & lines)

- Line Pattern (for lines & polygons)
- Polygon Pattern (for polygons)
- Raster (for rasters)
- Markers (for points, lines, & polygons)
- Buildings

What are Copy Rights?

Author's personal rights (authorship)

- Right to be mentioned as the author
- Right to disagree with distortions of the work
- Cannot be transferred (but the author can renounce her/his rights)

Property rights (use and distribution)

- Right to earn money through the work
- Property (or usage) rights can be transmitted to third parties (also partially)

(IGE|IPI, 2011)

General Principles of Third-Party Data Use (for Web Maps)

- Use of third-party material (e.g. maps, images, source code, data, ...)
 - Download
 - Private use
 - Commercial use
 - Publication without permission
- For every redistribution, public use and publication of a protected work only with permission (often under a license)
- The license specifies the conditions for using the work
- Possible uses without permission
 - Private use ATTENTION: it is very easy to leave the sphere of private use (school classes, work colleagues, Facebook friends, internet, etc. are examples where private use is not applicable)
 - Schools (education purposes)

(IGE|IPI, 2011)

Licensing Models

All rights reserved

Everyone must ask for permission to:

- copy,
- use, and
- publish the work.

(The author makes special conditions for each request.)

Some rights reserved

The author determines the general conditions for the:

- copy,
- use, and
- publication of his work.

Everyone can:

- copy,
- use, and
- publish the work.

No rights reserved

(public domain)

Questions

ETH zürich

Exercise 3

TileMill and CartoCSS:

- Review the CartoCSS documentation
- Create and export tiles with TileMill
- Integrate the exported tiles into your Web map

TH zürich

Exercise 4

Interactive Web Mapping:

- Display GeoJSON layer as overlay
- Add attribute-based symbolization
- Add additional interactive elements
 - Pop-up
 - Zoom-slider
 - Display coordinates

TileMill

